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Wave propagation and Thom’s theorem 

A D Gormani-f, R Wells§ and G N l[+xningS 
The Pennsylvania State University, State College, Pennsylvania 16801, USA 

Received 28 Au,yst  I980 

Abstract. Scalar waves propagated from a finite emitter in an inhomogeneous medium form 
caustics whose geometry and location are functions of both the boundary conditions on the 
emitter andthe inhomogeneity of the medium. The wave amplitude satisfies a Helmholtz 
equation. For the class of problems considered below, a phase is derived from a charac- 
terisation of the medium and the boundary conditions on the emitter. The location and 
geometry of the caustic in configirrs?ion space is determined from phase space considera- 
tions through the Lagrange manifold. An oscillatory integral, whose asymptotic expansion 
is that of the amplitude, is determined by :I sharpening of Maslov’s method of 
characteristics. Thom’s theorem prescribes a normal form for the phase function in the 
integral. Transformations carrying the phase function to the canonical form are deter- 
mined; then, following Duistermaat, the complete asymptotic series of the integral, and 
hence of the amplitude, is obtained. The entire algorithm is illustrated with a specific 
example. 

1. Introduction 

Wave propagation in an inhomogeneous, non-dispersive medium is commonly 
represented by a partial differential equation of the form 

where ?(r, t )  is the wavefunction, r refers to the spatial coordinates, t is time, f ( r )  is the 
profile characterising the inhomogeneity of the medium and c is the phase velocity 
when the medium is homogeneous, i.e. f(r) = 1. For monochromatic waves transmitted 
at frequency w with a harmonic time dependence, equation (1) becomes 

V ~ Z V ( ~ )  +-7’f(r)P(r) = o (2) 

where 7’ = 0 2 / c  ’. Equation (2) is the reduced Helmholtz wave-equation, a second- 
order linear partial differential equation. Because no general technique exists for 
solving such equations, approximate solutions, valid under specific assumptions, are 
often constructed. One such approximation, valid at high frequencies, is the asymptotic 
series solution. 

In the classical algorithm it is assumed that 

q ( r )  - exp(i.r+ ( r ) )  C uk ( r ) T P k  (3) 
k = O  
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1520 A D Gorman, R Wells and G N Fleming 

as 7 + 03. Substitution of (3) into (2) leads to 

(Vr+)2-fb9 = 0 (4) 

2(V,+) *vak +(V,'+)ak = -V,'ak-I, k=0, 1 , 2 , .  . . ,  a _ l  = 0. ( 5 )  

Equations (4) and ( 5 )  are the eikonal and transport equations, respectively. q ( r )  is 
determined by solving the eikonal for +(r); then substituting +(r) into the transport 
equation gives the ak (r) recursively. On caustic curves, i.e. the higher dimensional 
analogue of turning points, the ak (r) become unbounded. Then the procedure must be 
modified to remain valid (e.g. Zauderer 1970). 

An alternative approach is a mixed configuration-momentum space formulation 
introduced by Maslov (1972) and extended by Arnold (1968, 1972a, b) and Duister- 
maat (1973, 1974). The field is represented by the integral 

Wr) = j A(r,p,  7 )  exP(iT+(r,p)) dP (6) 

where 

A (r, p ,  7 )  - 2 Ak (r, p 
k 

and + (r, p )  has the form 

+( r .p )= r  . P - S ( P )  
where S ( p )  is the generating function of a canonical transformation. A(r, p ,  T )  may be 
regarded as an amplitude and +(r, p )  as a phase, hence p is the wavevector, i.e. the 
normal to the surfaces of constant phase (wavefronts). Consequently (2) has an 
asymptotic solution of the form 

W)-j A(r,p, T )  exp[i.r(r * p  - S ( p ) ) ]  dp = 0(T'). (7) 

Such integrals are evaluated using a stationary phase technique. At any field point, ro, 
the stationary phase condition (V,+ (ro, p )  = 0) becomes 

ro = 0,s (P) (8) 

I.e. it defines a Lagrange manifold. A Lagrange manifold may be defined as a surface 
determined by the gradient of a generating function; here it is also seen as a trans- 
formation from momentum space to configuration space (Amold 1978). 

On the Lagrange manifold the eikonal condition (4) becomes p - p  -f(r) = 0, from 
which Maslov defined his Hamiltonian 

H = p  * p  -f(r). (9) 

Because the Lagrange manifold is invariant under the flow determined by (9), S ( p )  and 
hence +( r ,p)  may be determined from Hamilton-Jacobi theory (e.g. Berry 1976, 
Arnold 1978). Maslov's technique also determines the amplitude, A(r, p ,  T ) ,  so that (7) 
holds with O ( T - ~ ) ,  rather than O ( T - ~ ) .  A refinement of Maslov's technique determines 
an amplitude so that (7) holds as shown (Gorman and Wells 1981). 

At  regular stationary points, i.e. those points ro at which the Hessian determinant of 
4 (ro, p)(det(d2+/dpi dp,)) is non-zero, Kelvin's classical stationary phase technique (e.g. 
Bleistein and Handelsman 1975) suffices to determine the asymptotic series of the field 
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integral in (7). At singular stationary points (det(d2+/dpidpj) = 0)  where + (ro, p )  has 
finite codimension, the technique of Duistermaat (1973, 1974) obtains the asymptotic 
series of the field integral. 

2. Synopsis 

In this investigation we consider scalar waves, propagated from a finite source, in an 
inhomogeneous medium. Each field point will be specified by the range, i.e. the 
horizontal distance between two points on a plane, and the depth. For computational 
purposes the medium is often represented as a series of horizontal layers. Each stratum 
is separately characterised by a linear approximation to a depth-dependent profile valid 
only within the layer (Budden 1961, Brekhovskii 1962). Here, the medium is charac- 
terised by a single, continuous depth-dependent profile f ( x )  which will be assumed 
invertible, i.e. f - ’ ( x )  is defined except at a finite number of isolated points. (At such 
points this algorithm does not apply.) Then the form of (2) we consider is 

V 2 + ( r )  + T * f ( x ) + ( r )  = o (10) 

where r = ( x ,  y ), x the depth and y the range. The phase will be so obtained as to enable 
an explicit representation of the emitter geometry and the boundary conditions on the 
wavevectors in 4 (r,  p )  itself. The determination of the caustic curve in configuration 
space proceeds from an analysis of the stationary points of 4 (r, p )  in momentum space. 
A transport equation is derived in the mixed space representation which allows the 
determination of the higher order terms in the asymptotic series. The actual evaluation 
of the asymptotic series of the field integral (7) proceeds by transforming it to a form 
suitable for asymptotic analysis. This canonical form and the existence of the coor- 
dinate transformations required to obtain it follow from Thom’s theorem (e.g. Brocker 
and Lander 1975, ch 15, Poston and Stewart 1978, ch 7); the explicit coordinate 
transformations are determined below. The complete asymptotic series both on and off 
the caustic is then determined. The entire algorithm is illustrated with a specific 
example. 

3. Determination of the phase 

We consider Maslov’s Hamiltonian 

H =p: +pY’-f(x) (1 1) 

where p = (px ,  p,,) is the wavevector. We note here, however, that on the Lagrange 
manifold determined by r = V p S ( p ) ,  the eikonal condition (4) becomesp - p  -f(x) = 0. 
Consequently at any field point 

x =f-’(px” +p;, (12) 

determines one coordinate on the Lagrange manifold, 
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s ( p )  is a particular anti-derivative of ds"/dp, (with respect top,), which in turn is an 
anti-derivative of the known function a2S/dpxapy with respect to p,. 8 ( p , )  is an 
arbitrary function, introduced by the integration over p,, the choice of which proceeds 
from boundary conditions on the wavevectors at the emitter. Equations (13) and (14) 
define the Lagrange manifold. 

Let B(p,) be represented by a polynomial in p y  of arbitrary power with constant 
coefficients and let the geometry of the emitter be represented by 

y (15) 

The spatial coordinates of the emitter taken with the initial wavevectors may be 
regarded as a lifting from configuration space to the mixed configuration-momentum 
space. Then by choosing initial conditions on the emitter that satisfy (12), equations 
(13), (14) and (15) determine 

on the emitter. Successive differentiations of (16) with respect to x combined with (13) 
lead to a system of linear algebraic equations for the ai in terms of the initial conditions 
of the wavevectors, thus determining S ( p )  and hence the phase 

4 (r,  P )  = 4 (x, Y >  P,, Py 1 = XPX + YP, - s (PX, PY 1. (17) 

The equation of the caustic in configuration space proceeds from the Hessian of 
+ ( r , p ) .  At caustic points the Hessian determinant vanishes (Berry 1976). Thus 
equating the Hessian determinant to zero determines the caustic curve in momentum 
space. Associated with each point, p o ,  on the caustic in momentum space is a point in 
configuration space determined by the Lagrange manifold, equations (13) and (14): 

The locus of these points determines the caustic in configuration space, 

The transport equation is determined by carrying the differentiation (10) across the 
integral (7), yielding 

1 exp[iT(r * p  -S (p ) ) ] [ ( i~ )~ (p  - p  -f(x))A + 2 i ~ ( p  0 V,A)+V?A] dp = O ( T - ~ ) .  
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The first term is Maslov's Hamiltonian (9) on the manifold. Expanding p * p  - f ( x ) ,  

where the remainder term 

D(r ,p)  = D  = - 

Substituting into (18) leads to 

exp[i.r(r * p  -S(p))]i.;(-D V d  -AV, * D +2p * V,A +_V:A IT l )  dp = O(Fm).  

(19) 

For (7) to be an asymptotic solution, it is necessary that (19) be satisfied. A sufficient 
condition for (19) is that 

(20) 
1 

-D V d - A V ,  * D + 2 p  *V,A+:V:A=O 
17 

in a neighbourhood of the Lagrange manifold. Then by introducing the flow 

equation (20) leads to a transport equation in such a neighbourhood. That is, we allow 
the asymptotic series 

A(r,p,  T)-CAk(r,p)T-k 
k 

to evolve according to the transport equation 

Ak-Akvp sD+v;Ak- l=o  (22) 

alongthe trajectories of (21) (Gorman and Wells 1981, Gorman et a1 1980). (Note that 
in general the flow (21) is not the Hamiltonian flow.) 

5. The coordinate transformations 

The determination of the asymptotic series of the integrals 

Ak (r,  p )  exp{iTd'(r, p ) }  dp 

(where 4 (r,  p )  and Ak (r,  p )  are obtained from equations (17) and (22) respectively) at 
any field point proceeds by transforming the phase to the form 

~ ( r O , P ) = d ' ( r O , P o ) * P : * T P ~ .  (23) 

Thom's theorem guarantees the existence of a coordinate transformation carrying 
d(r ,p )  to the form (23) for Hessians of rank al. Off the caustic, the Hessian 
determinant of 4 (r, p )  is non-singular at (ro,  pa); then n = 2 and the classical stationary 
phase technique applies to the transformed integral. On the caustic, the Hessian 
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determinant is singular at (ro,  po) ;  then n is determined from the relative degeneracy of 
the Hessian based on a criterion derived from Thom’s theorem (appendix). The 
classical stationary phase technique must then be modified to determine the asymptotic 
series. When n = 2, 3 or 4, explicit algebraic computation suffices to determine the 
required transformations. For n > 4 the determination of the appropriate coordinate 
transformation requires the algorithm specified in the proof of the splitting lemma (e.g. 
Gromoll and Meyer 1969, Poston and Stewart 1978, p 61), involving implicit rather 
than explicit solutions of equations. When 4 (r,  p )  is analytic the procedure can be made 
explicit, however, by an application of the Cauchy inversion theorem. 

At ro let +(r ,  p )  have a stationary point po ,  taken at p o  = (0,O) for clarity. Then the 
Taylor series of 4 (r, p )  at (ro, p o )  is 

4 (ro, p 1 = 4 ( T o ,  0) + c1 ( P x  )P*’ + 2PXP,C2(PX, P y  ) + C3(P, )PI: (24) 

where C1(0) and C3(0) # 0. A linear (principal axis) transformation, followed by a 
regrouping, carries (24) to 

+(ro, 5 1 , 5 2 )  = 4 ( r o , O ) + g 1 ( 5 1 , 5 2 ~ 5 ~ + ~ 5 1 5 ~ ~ ~ 5 2 ~ + g g 2 ~ 5 2 ~ 5 ~  (25) 

where g l ( 0 ) ,  g 2 ( 0 ) f 0 .  When n =2 ,  i.e. gl(0) and gz(0) are the eigenvalues, by 
completing the square we determine the coordinate transformation 

where ii (0) = gi (0) when gi (0) > 0 and ii (0) = - g i  (0) when gi (0) < 0, which carries 

(27) 

where the signs of each pi are determined by the sign of the corresponding eigenvalue. 
(The gi may be computed from equations (24) and (25).) In (26) the positive sign in p 1  
holds only when the Hessian at ( P o ,  P O )  is positive definite; the positive sign in p2 holds 
only when the Hessian is negative definite with g2(0) the positive eigenvalue. When 
n = 3, similarly, we determine the coordinate transformation 

4b-9 P) at (ro, Po) to 

4 (ro, P 1 ,  P 2 )  = 4 (ro, 0) * P ?  * P ;  

where the positive sign in P1 holds only when g l ( 0 )  > 0, which carries 4 (r,  p )  at (ro, p o )  
to 

4 ( r o , P 1 , P 2 ) = 4 ( r o ,  o ) * P : + P ;  (29) 

where the sign of P I  is determined by the sign of g l ( 0 ) .  When n = 4 and g 2 ( 0 ) -  
g,(O)-’h (0)’ > 0, the coordinate transformation 

carries 4 (r,  p )  at (ro, p o )  to 
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carries + (r, p )  at (ro,  p o )  to 

ddro, P1, P 2 )  = 4 (ro, 0) * P ?  - P ; .  (33) 
In (30) and (32) the sign convention in p is as in (28) and in (3 1) and (33) the sign of P is 
determined by the sign of g l ( 0 ) .  

When n > 4 explicit algebraic computation does not, in general, suffice to determine 
a coordinate transformation which carries + (r, p )  at (ro, p o )  to 

4 (ro, P 1,  P 2 )  = 4 (ro, 0) *PP * P i  = 4 (ro, PI. (34) 
The procedure for determining the transformation can be made explicit however. 
Application of a principal axis transformation to + (r, p )  at (ro, p o )  determines 

@(r0,51, 5 2 )  =+(ro, o)+g1(51,52)5:+251522h(52)+~(52)5; (35) 

where g(0 )  is the non-vanishing eigenvalue and l(0) # 0. Because d?+(O) # 0, &@(O) # 
0; hence from the implicit function theorem, setting d l + ( t l ,  &) = 0 determines an 
implicit equation for el in terms of E 2 ,  e.g. 51=8(52). @(e2) may be determined 
explicitly, however, from the Cauchy inversion formula, namely 

for fixed &, where y is a circle in c 2 = 0  enclosing t 1 = 0 .  Then introducing the 
transformation 

51 = a 1 + 8 (a2) 5 2  = a2 (37) 
equation (35) becomes 

~ w ~ , Q I ~ + N ~ ~ ) , ~ ~ )  

Expanding (38) in a Taylor series about a l  = 0, with a2 fixed, determines 

@(r0 ,~ l+e (a2 ) ,  a2) =+(ro, o)++(ro, @d, az)+&(al, a2) (39) 
where R (a 1, a2)  is the remainder of the series less a factor of a : (R  (0) # 0 because 
d:+(O) # 0)  and where the coefficient of a l  vanishes because d1@(f1, t2) = 0. Then the 
transformation 

Y1  =a1lRb1, a2)11'2 

4 (ro, y l ,  7 2 )  = 4 (ro, 0) * y ? + p ( 7 2 )  = W - 0 ,  a 1 + 8 (az), az). 

yz = a2 

obtains 

(40) 
Since the first non-vanishing Taylor coefficient (at t2 = 0) in the t2 direction is the n th 
(equation (35)), p (y2)  = y;fi ( y 2 )  with fi (0) # 0; then the transformation 

P l = Y l  P 2  = Y21fi(Y2)11/n 
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where the signs of the Pi must be determined for each specific case, as above. Equation 
(41) is the form required for the determination of the asymptotic series, cf equation 

Under the coordinate transformation which carries 4 (r ,  p )  to the appropriate 
(34). 

canonical form, the integral (6)  at (ro,  po)  becomes 

A p ,  7 )  exp( i~4  (r,  P ) )  dp 

where 

A ( r O ,  P I ,  P2,  7) may be determined by repeated applications of the Cauchy inversion 
theorem (cf Dieudonne 1960). 

6. Determination of the series 

When n = 2 the asymptotic series of the transformed integral (42) is determined using 
the classical stationary phase technique, e.g. most elegantly, from Duistermaat's 
!heorem 

27r 1 jj A(rO,Pl, p2)  exp[iT(+tP: * P ~ I  dpI  d ~ ~ - - - x p ( w % )  7 z o p k ~ ( r O U ,  0)T-k 

(43) 
where 

and sgn is the number of positive eigenvalues less the number of negative eigenvalues 
and the sign of each derivative operator a/@, is determined by the sign of pi (Arnold 
197213). When n 2 3 the classical stationary phase technique must be modified to 
remain valid. First, following Duistermaat, we express (42) as 

jj A h ,  P I ,  P z ,  7) exp[id*P: *Pi11 dPl dP2 

= 5 exp(*i~P'S) dP2 I A(ro,  P I ,  P 2 7  7) exp(*i.rP?) dP,. 
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The asymptotic series of the integral over P proceeds from Duistermaat's theorem, i.e. 

(44) 
where 

Each AZk (ro, 0, P 2 )  determines an integral of the form 

i.e. the remainder of the Taylor series less a factor of n-'. 

- r , ( ~ ) = / - ~ e x p ( * i ~ P ; l P $  dP2 

The integrals 
m 

are determined by contour integration. A partial integration of the last term in (46) 
gives 
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which follows from the boundedness of A ( r , p ,  T )  and its derivatives (Guillemin and 
Sternberg 1977, pp 5-6). Let S be an operator defined by 

Then (46) may be expressed as 

I ( T ) A Z k  ( r O ,  0, P 2 )  

1 
= C X J O ( T ) + C X I J I ( T ) +  1 . .  + C X n - z J n - 2 ( T ) r - I ( T ) S A Z k ( r o ,  0, p2) (47a 1 

17 

or alternatively 

I ( T )  ( A  I*_S 1: 1 = & J O ( T ) + & J ~ ( T ) +  . . . +hn-2Jn-2 (~ )  (47b 1 

where 1 is the identity operator and the &k are operators which carry functions to 
operators. 

Therefore, equation (45) becomes 

For n 3 3, equation (50) is the complete asymptotic series. 

7. Example 

To illustrate the algorithm we consider a medium characterised by a linear profile, 
f ( x )  = x .  We investigate the far field, i.e. the distanxs involved are much larger than the 
dimensions of the emitter, produced by a line source, y = 2x, centred at (5, -4). Let the 
magnitude of the momentum be jp I = 5 ;  for definiteness let the components of the initial 
momenta and the spatial variation of the momenta at the emitter be 
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where the primes indicate differentiation with respect to x .  At the emitter let 
A&, p )  = 1 .  

From ( 1  1) the Hamiltonian becomes 

H =px’+py” -x = o  
leading to the Lagrange manifold, equations (13)  and (14) ,  

x = P :  + P Y  2 

y =2pxpy +3-5py +P,” +PP. 

Therefore, for ( r ,  p >  = (x, y ,  p., p y >  

(53)  2 5 2  1 3  1 4  
~ ( ~ , Y , P x , p y ) = ~ P x + Y P y - ~ P p x 3 - P x P Y  -3PY+5PY - T P y  -zPY 

4p: -- 4p; - lop,  + 4pxpy + 6pxp,” = 0. 

from (17 ) .  By equating the determinant of the Hessian to zero we determine the 
equation of the caustic in momentum space, 

(54)  

Those real (p, ,  py  ) satisfying (54) project the caustic onto configuration space through 
the Lagrange manifold (52) leading to the curve in figure 1. 

Horizontal range l y )  (dimensionless uni ts)  
1 2 3 4 5 
I I I 1 I 

1 I I 1 L 

Figure 1. The caustic curve. 

At the highest degenerate point on the caustic, r = (2 ,  2) ,  n = 4 ;  then the coordinate 
transformation 
p *  = ( l - ~ a l + : a 2 + ~ a :  -&a1a2+&a2) 2 1/2 a2 

p2 = [(&al-$t)Z(l-&l +&,+&a? -~i;cu1a2+&a~)-1-~]1/4a1 

carries C#I (r, p )  at ( 2 , 2 ,  1, 1 )  to 

(55 )  
2 -1/2 1 

- ( 1  -sa1 +$CY2 +&a: - &a1a2 +&az) (=a1 -$)a? 

&2,2,  p1, P 2 )  =+p:  + p ; .  
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Under the coordinate transformation (55) the field at r = (2, 2) is represented by 

+(2,2) = A(2,2, P I ,  Pz ,  7 )  exp[i&-P: +P;)1 dP, dP,. (56) 

The first two terms in the asymptotic series of (56) are then 

+ ( 2 ,  2) - - 0 . 7 7 ~ - ~ ’ ~  exp(v-rri)r($)(cos $ 7 ~  +i  sin QT) 

- 0 . 5 4 . ~ - ~ ’ ~  exp(?-rri)r(:)(cos iar + i  sin in ) .  
Equation (56) is the asymptotic solution for the emission defined by (51) on the line 

source y = 2x centred at (5, -4). The conditions given in (50) are a 4th order 
approximation to the solution of (51) at the emitter. It should be noted that if a higher 
order approximation to the solution of (51) were given, the location of the cusp would 
be unchanged; but the asymptotic series at the cusp would change slightly. 

Appendix 

Consider a function 4 ( r ,  p ) ,  where r = (x, y )  and p = ( p x ,  F, ’ such that at (rO, pa) 

Q p 4  (ro, Po)  = 0 

and the Hessian $4 (ro,  po)/dpi apj has at least one non-zero eigenvalue. 
The normal form of 4 (r,  p )  at (ro, pa) is then 

&~o,B)=4( ro ,po)*P:  * P ;  
where the signs of the Pi are determined by the corresponding eigenvalues. If the 
Hessian determinant is non-zero at (ro,  p o ) ,  n = 2. If the Hessian determinant is zero ab 
(ro, Po)  then 

F ( t )  = 4 ( r ~ ,  p x  o + te I ,  pY 0 + tez) 

where e l ,  ez  are the components of the eigenvector. The exponent of the first 
non-vanishing term in the Taylor series determines the value of n. The sign is 
determined by the sign of the Taylor coefficient. 
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